If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14n^2-5=33n
We move all terms to the left:
14n^2-5-(33n)=0
a = 14; b = -33; c = -5;
Δ = b2-4ac
Δ = -332-4·14·(-5)
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-37}{2*14}=\frac{-4}{28} =-1/7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+37}{2*14}=\frac{70}{28} =2+1/2 $
| ×+8y=-15 | | 7-b÷5=3 | | 5=u/4-8 | | x-¼=¾ | | -10=b{6 | | 0.3x+5x=9 | | 6x+2+-2x=14 | | 8x+13=9x+4= | | f(200)=100(1.04)^200 | | 9m-14m-24=0 | | x/3+11=14 | | 8x+23=2(4x+6) | | (10x-25)+(5x)=180 | | 1x+2x+1=3x+2+3 | | 10x-3=-47 | | m+62=75 | | x^2-x-6=-6-7x | | -4b-8=-2 | | x+8.3=29.32 | | 12(x+2)=6(2x+4) | | x+90°=7X° | | 11/2x=8 | | 8(2x-3)=4(2x-8) | | 5x-15=5(x-2) | | 10x-4=25 | | 5k^2-9k+18=4k^2 | | (×+90)°=7x° | | 2x+51=33=142 | | 2(-2n+9)=-15 | | 13x^2+8=-13x^2+1 | | 4/5x-6/5=6/5x-4/5 | | 13x-5-3x=15 |